Benzoic acid

From WikiChem
Jump to: navigation, search
Benzoic acid
Benzoic acid.svg
Benzoic-acid-3D-vdW.png
IUPAC name Benzoic acid
Other names Benzenecarboxylic acid,
Carboxybenzene,
E210, Dracylic acid
Identifiers
InChI InChI=1/C7H6O2/c8-7(9)6-4-2-1-3-5-6/h1-5H,(H,8,9)
InChIKey WPYMKLBDIGXBTP-UHFFFAOYAD
Standard InChI InChI=1S/C7H6O2/c8-7(9)6-4-2-1-3-5-6/h1-5H,(H,8,9)
Standard InChIKey WPYMKLBDIGXBTP-UHFFFAOYSA-N
CAS number [65-85-0]
EC number 200-618-2
RTECS DG0875000
ChemSpider 238
PubChem 243
SMILES
Properties[1][2]
Chemical formula C6H5COOH
Molar mass 122.12 g/mol
Appearance Colourless crystalline solid
Density 1.32 g/cm3, solid
Melting point

122.4 °C (395 K)

Boiling point

249 °C (522 K)

Solubility in water Soluble (hot water)
0.29 g/100 ml (20 °C)
Solubility in [[THF]] 3.37 mol/dm3
Solubility in [[ethanol]] 2.52 mol/dm3
Solubility in [[methanol]] 2.82 mol/dm3
log P 1.87
Acidity (pKa) 4.21
Dipole moment 1.72 D (dioxane soln.)
Structure
Crystal structure Monoclinic
Molecular geometry planar
Thermochemistry[3]
Std enthalpy of formation ΔfHo298 –385 kJ/mol
Std enthalpy of combustion ΔcHo298 –3228±4 kJ/mol
Standard molar entropy So298 167.2 J K–1 mol–1
Hazards[1][4]
Material safety data sheet (MSDS) ICSC 0103
EU index number not listed
GHS pictograms Acute Tox. (oral) 4; Eye Irrit. 2STOT RE (inhalation) 2
GHS signal word WARNING
GHS hazard statements H302, H319, H373
Flash point 121 °C (250 ºF)
Autoignition temp. 570 ºC (1058 ºF)
Related compounds
Other carboxylic acids Phenylacetic acid
Hippuric acid
Salicylic acid
Other compounds Benzene
Benzaldehyde
Benzyl alcohol
Benzylamine
Benzyl benzoate
Benzoyl chloride
Except where noted otherwise, data are given for materials in their standard state (at 25 °C, 100 kPa)
Benzoic Acid Crystals

Benzoic acid, C7H6O2 (or C6H5COOH), is a colorless crystalline solid and the simplest aromatic carboxylic acid. The name derived from gum benzoin, which was for a long time the only source for benzoic acid. This weak acid and its salts are used as a food preservative. Benzoic acid is an important precursor for the synthesis of many other organic substances.

History

Benzoic acid was discovered in the 16th century. The dry distillation of gum benzoin first described by Nostradamus (1556), and subsequently by Alexius Pedemontanus (1560) and Blaise de Vigenère (1596).[5]

Justus von Liebig and Friedrich Wöhler determined the structure of benzoic acid in 1832.[6] They also investigated how hippuric acid is related to benzoic acid.

In 1875 Salkowski discovered the antifungal abilities of benzoic acid, which was used for a long time in the preservation of benzoate-containing cloudberry fruits.[7]

Production

Industrial preparations

Benzoic acid is produced commercially by partial oxidation of toluene with oxygen. The process is catalyzed by cobalt or manganese naphthenates. The process uses cheap raw materials, proceeds in high yield, and is considered environmentally green.[ref. needed] toluene oxidation

U.S. production capacity is estimated to be 126,000 tonnes per year, much of which is consumed domestically to prepare other industrial chemicals.

Laboratory synthesis

Benzoic acid is cheap and readily available, so the laboratory synthesis of benzoic acid is mainly practiced for its pedagogical value. It is a common undergraduate preparation.

For all syntheses, benzoic acid can be purified by recrystallization from water because of its high solubility in hot water and poor solubility in cold water. The avoidance of organic solvents for the recrystallization makes this experiment particularly safe. Other possible recrystallization solvents include acetic acid (anhydrous or aqueous), benzene, petroleum ether, and a mixture of ethanol and water.[8]

By hydrolysis

Like any other nitrile or amide, benzonitrile and benzamide can be hydrolyzed to benzoic acid or its conjugate base in acid or basic conditions.

From benzaldehyde

The base-induced disproportionation of benzaldehyde, the Cannizzaro reaction, affords equal amounts of benzoate and benzyl alcohol; the latter can be removed by distillation.

Benzaldehyde Cannizzaro reaction.png

From bromobenzene

Bromobenzene can be converted to benzoic acid by "carbonation" of the intermediate phenylmagnesium bromide:[9]

C6H5MgBr + CO2 → C6H5CO2MgBr
C6H5CO2MgBr + HCl → C6H5CO2H + MgBrCl

From benzyl alcohol

Benzyl alcohol is refluxed with potassium permanganate or other oxidizing reagents in water. The mixture is hot filtered to remove manganese dioxide and then allowed to cool to afford benzoic acid.

Historical preparations

The first industrial process involved the reaction of benzotrichloride (trichloromethyl benzene) with calcium hydroxide in water, using iron or iron salts as a catalyst. The resulting calcium benzoate is converted to benzoic acid with hydrochloric acid. The product contains significant amounts of chlorinated benzoic acid derivatives. For this reason, benzoic acid for human consumption was obtained by dry distillation of gum benzoin. Food-grade benzoic acid is now produced synthetically.[10]

Alkyl-substituted benzene derivatives give benzoic acid with the stoichiometric oxidants potassium permanganate, chromium trioxide, nitric acid.

Uses

Feedstock

Benzoic acid is used to make a large number of chemicals, important examples of which are:

Food preservative

Benzoic acid and its salts are used as a food preservative, represented by the E-numbers E210, E211, E212, and E213. Benzoic acid inhibits the growth of mold, yeast[11] and some bacteria. It is either added directly or created from reactions with its sodium, potassium, or calcium salt. The mechanism starts with the absorption of benzoic acid in to the cell. If the intracellular pH changes to 5 or lower, the anaerobic fermentation of glucose through phosphofructokinase is decreased by 95%. The efficacy of benzoic acid and benzoate is thus dependent on the pH of the food.[12] Acidic food and beverage like fruit juice (citric acid), sparkling drinks (carbon dioxide), soft drinks (phosphoric acid), pickles (vinegar) or other acidified food are preserved with benzoic acid and benzoates.

Typical levels of use for benzoic acid as a preservative in food are between 0.05–0.1%. Foods in which benzoic acid may be used and maximum levels for its application are laid down in international food law.[13][14]

Concern has been expressed that benzoic acid and its salts may react with ascorbic acid (vitamin C) in some soft drinks, forming small quantities of benzene.[15]

See also: Benzene in soft drinks

Medicinal

Benzoic acid is a constituent of Whitfield's Ointment which is used for the treatment of fungal skin diseases such as tinea, ringworm, and athlete's foot. [16][17]

Biology and health effects

Benzoic acid occurs naturally free and bound as benzoic acid esters in many plant and animal species. Appreciable amounts have been found in most berries (around 0.05%). Ripe fruits of several Vaccinium species (e.g., cranberry, V. vitis idaea; bilberry, V. macrocarpon) contain as much as 300-1300 mg free benzoic acid per kg fruit. Benzoic acid is also formed in apples after infection with the fungus Nectria galligena. Among animals, benzoic acid has been identified primarily in omnivorous or phytophageous species, e.g., in viscera and muscles of the ptarmigan (Lagopus mutus) as well as in gland secretions of male muskoxen (Ovibos moschatus) or Asian bull elephants (Elephas maximus).[18]

Gum benzoin contains up to 20% of benzoic acid and 40% benzoic acid esters.[19]

Benzoic acid is present as part of hippuric acid (N-benzoylglycine) in urine of mammals, especially herbivores (Gr. hippos = horse; ouron = urine). Humans produce about 0.44 g/L hippuric acid per day in their urine, and if the person is exposed to toluene or benzoic acid it can rise above that level.[20]

For humans, the WHO's International Programme on Chemical Safety (IPCS) suggests a provisional tolerable intake would be 5 mg/kg body weight per day.[18] Cats have a significantly lower tolerance against benzoic acid and its salts than rats and mice. Lethal dose for cats can be as low as 300 mg/kg body weight.[21] The oral LD50 for rats is 3040 mg/kg, for mice it is 1940-2263 mg/kg.[18]

Chemistry

Reactions of benzoic acid can occur at either the aromatic ring or the carboxyl group:

Aromatic ring

benzoic acid aromatic ring reactions

Electrophilic aromatic substitution reaction will take place mainly in 3-position due to the electron-withdrawing carboxylic group; i.e. benzoic acid is meta directing.

The second substitution reaction (on the right) is slower because the first nitro group is deactivating.[22] Conversely, if an activating group (electron-donating) was introduced (e.g., alkyl), a second substitution reaction would occur more readily than the first and the disubstituted product might not accumulate to a significant extent.

Carboxyl group

All the reactions mentioned for carboxylic acids are also possible for benzoic acid.

benzoic acid group reactions

References

  1. 1.0 1.1 Benzoic acid; International Chemical Safety Card 0103; International Labour Organization: Geneva, October 1999, <http://www.inchem.org/documents/icsc/icsc/eics0103.htm>.
  2. Solubility of benzoic acid in non-aqueous solvents, <http://oru.edu/cccda/sl/solubility/allsolvents.php?solute=benzoic%20acid>.
  3. Benzoic acid. In NIST Chemistry WebBook; National Institute for Standards and Technology, <http://webbook.nist.gov/cgi/inchi/InChI%3D1S/C7H6O2/c8-7(9)6-4-2-1-3-5-6/h1-5H,(H,8,9)>. (accessed 22 August 2009).
  4. HSNO Chemical Classification Information Database, <http://www.ermanz.govt.nz/Chemicals/ChemicalDisplay.aspx?SubstanceID=5014> (accessed 22 August 2009), New Zealand Environmental Risk Management Authority.
  5. Neumüller, O.-A. Römpps Chemie-Lexikon, 6th ed.; Frankh'sche Verlagshandlung: Stuttgart, 1988. ISBN 3-440-04516-1. OCLC 50969944.
  6. Liebig, J.; Wöhler, F. Untersuchungen über das Radikal der Benzoesäure. Ann. Chem. 1832, 3, 249–82. DOI: 10.1002/jlac.18320030302.
  7. Salkowski, E. Berl. Klin. Wochenschr. 1875, 12, 297–98.
  8. Perrin, D. D.; Armarego, W. L. F. Purification of Laboratory Chemicals, 3rd ed.; Pergamon, 1988; p 94. ISBN 0-08-034715-0.
  9. Pavia, Donald L. Introduction to Organic Laboratory Techniques: A Small Scale Approach; Thomson Brooks/Cole, 2004; pp 312–14. ISBN 0534408338.
  10. Killinger-Mann, Karen What's in my..., <http://www.columbian.com/lifeHome/whatsinmy/10102006news66192.cfm> (accessed 8 September 2007).
  11. Warth, A. D. Mechanism of action of benzoic acid on Zygosaccharomyces bailii: effects on glycolytic metabolite levels, energy production, and intracellular pH. Appl. Environ. Microbiol. 1991, 1, 1. PMID 1785916, <http://aem.asm.org/cgi/content/abstract/57/12/3410>.
  12. Pastrorova, I.; de Koster, C. G.; Boom, J. J. Analytic Study of Free and Ester Bound Benzoic and Cinnamic Acids of Gum Benzoin Resins by GC-MS HPLC-frit FAB-MS. Phytochem. Anal. 1997, 8, 63–73. DOI: 10.1002/(SICI)1099-1565(199703)8:2<63::AID-PCA337>3.0.CO;2-Y.
  13. GSFA Online Food Additive Group Details: Benzoates (2006), <http://www.codexalimentarius.net/gsfaonline/groups/details.html?id=162>.
  14. European Parliament and Council Directive No 95/2/EC of 20 February 1995 on food additives other than colours and sweeteners. OJEU L61, 18.3.1995, pp 1–40.
  15. BfR article, <http://www.bfr.bund.de/cm/245/indications_of_the_possible_formation_of_benzene_from_benzoic_acid_in_foods.pdf>.
  16. Whitfield Ointment, <http://www.medipharmalimited.com/whitfield_ointment.asp>.
  17. Owens Wilson, Charles; Gisvold, Ole; Block, John H. Wilson and Gisvold's Textbook of Organic Medicinal and Pharmaceutical; Lippincott Williams & Wilkins, 2004; p 234. ISBN 0781734819.
  18. 18.0 18.1 18.2 Benzoic Acid and Sodium Benzoate; Concise International Chemical Assessment Document No. 26; International Programme on Chemical Safety: Geneva, 2000. ISBN 92-4-153026-X, <http://www.inchem.org/documents/cicads/cicads/cicad26.htm>.
  19. Tomokuni, K.; Ogata, M. Direct Colorimetric Determination of Hippuric Acid in Urine. Clin. Chem. 1972, 18, 349–51.
  20. Krebs, Hans A.; Wiggins, David; Stubbs, Marion; Sols, Alberto; Bedoya, Francisco Studies on the mechanism of the antifungal action of benzoate. Biochem. J. 1983, 214, 657–63, <http://www.biochemj.org/bj/214/0657/2140657.pdf>.
  21. Bedford, P. G.; Clarke, E. G. Experimental benzoic acid poisoning in the cat. Vet. Rec. 1972, 90, 53–58. PMID 4672555.
  22. Brewster, R. Q.; Williams, Bill; Phillips, Ross 3,5-Dinitrobenzoic Acid. Org. Synth. 1942, 22, 48, <http://www.orgsyn.org/orgsyn/orgsyn/prepContent.asp?prep=cv3p0337>; Coll. Vol., 3, 337.

Further reading

External links

Error creating thumbnail: Unable to save thumbnail to destination
Wikipedia-logo.png This page was originally imported from Wikipedia, specifically this version of the article "Benzoic acid". Please see the history page on Wikipedia for the original authors. This WikiChem article may have been modified since it was imported. It is licensed under the Creative Commons Attribution–Share Alike 3.0 Unported license.