Lithium aluminium hydride

From WikiChem
Jump to: navigation, search
Lithium aluminium hydride
IUPAC name Lithium tetrahydridoaluminate(1−)
Identifiers
InChI InChI=1/Al.Li.4H/q-1;+1;;;;/rAlH4.Li/h1H4;/q-1;+1
InChIKey OCZDCIYGECBNKL-PDCCDREHAZ
Standard InChI InChI=1S/Al.Li.4H/q-1;+1;;;;
Standard InChIKey OCZDCIYGECBNKL-UHFFFAOYSA-N
CAS number [16853-85-3]
EC number 240-877-9
RTECS BD0100000
ChemSpider 26150
Properties[1]
Chemical formula LiAlH4
Molar mass 37.954 g mol–1
Appearance white or grey solid
Density 0.917 g cm–3
Melting point

125 °C decomp.

Solubility in water reacts
Solubility in diethyl ether approx. 300 g dm–3
Structure[2]
Crystal structure monoclinic
Space group P21/c (No. 14)
Coordination geometry tetrahedral (Al)
Thermochemistry[3][4]
Std enthalpy of formation ΔfHo298 –117.15 kJ mol–1
Standard molar entropy So298 87.90 J K–1 mol–1
Hazards[5]
EU index number 001-002-00-4
GHS pictograms Water-react. 1
GHS signal word DANGER
GHS hazard statements H260
Related compounds
Other hydrides aluminium hydride
sodium borohydride
sodium hydride
Except where noted otherwise, data are given for materials in their standard state (at 25 °C, 100 kPa)

Lithium aluminium hydride, LiAlH4, often abbreviated to LAH or "Lithal", is the lithium salt of the tetrahydridoaluminate(1−) anion. A moderately air-stable white or grey solid, it is widely used as a strong reducing agent in organic synthesis.

It was first prepared from the reaction between lithium hydride (LiH) and aluminium chloride:[6]

4 LiH + AlCl3 → LiAlH4 + 3 LiCl

The modern industrial synthesis involves the initial preparation of sodium aluminium hydride from the elements under high pressure and temperature:[7]

Na + Al + 2 H2 → NaAlH4

LAH is then prepared by metathesis reaction according to:

NaAlH4 + LiCl → LiAlH4 + NaCl

which proceeds in a high yield of LAH. Lithium chloride is removed by filtration from an ethereal solution of LAH, with subsequent precipitation of LAH to yield a product containing around 1% LiCl by mass.[7]

References

  1. CRC Handbook of Chemistry and Physics, 62nd ed.; Weast, Robert C., Ed.; CRC Press: Boca Raton, FL, 1981; p B-113. ISBN 0-8493-0462-8.
  2. Løvvik, O. M.; Opalka, Susanne M.; Brinks, Hendrik W.; Hauback, Bjørn C. Crystal structure and thermodynamic stability of the lithium alanates LiAlH4 and Li3AlH6. Phys. Rev. B 2004, 69 (13), 134117. DOI: 10.1103/PhysRevB.69.134117.
  3. Lithium tetrahydroaluminate. In NIST Chemistry WebBook; National Institute for Standards and Technology, <http://webbook.nist.gov/cgi/inchi/InChI%3D1S/Al.Li.4H/q-1;+1;;;;>. (accessed 20 June 2010).
  4. Smith, Martin B.; Bass, George E., Jr. Heats and Free Energies of Formation of the Alkali Aluminum Hydrides and of Cesium Hydride. J. Chem. Eng. Data 1963, 8 (3), 342–46. DOI: 10.1021/je60018a020.
  5. Index no. 001-002-00-4 of Annex VI, Part 3, to Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 1907/2006. OJEU L353, 31.12.2008, pp 1–1355 at p 340.
  6. Finholt, A. E.; Bond, A. C.; Schlesinger, H. I. Lithium Aluminum Hydride, Aluminum Hydride and Lithium Gallium Hydride, and Some of their Applications in Organic and Inorganic Chemistry. J. Am. Chem. Soc. 1947, 69 (5), 1199–1203. DOI: 10.1021/ja01197a061.
  7. 7.0 7.1 Holleman, A. F.; Wiberg, E.; Wiberg, N. Lehrbuch der Anorganischen Chemie, 102nd ed.; de Gruyter, 2007. ISBN 978-3-11-017770-1.

External links